Python Library
In this post, I would like to share about the useful Python libraries.
Pyforest
Lazy-import of all popular Python Data Science libraries. Stop writing the same imports over and over again.
pip install pyforest
or
pip install --upgrade pyforest
It supports almost most of the popular libraries such as pd(pandas), np(numpy), sklearn etc. You can check the supported libraries by running below command
dir(pyforest)
In the jupyter notebook just run command below and you dont have to import for each libraries when you want to use it.
import pyforest
To check what libraries you have imported you can run command below
active_imports()
Then you dont have to import all the libraries at the beginning each time, so give it a try!
Prophet
How to install it
pip install fbprophet
python import
from fbprophet import Prophet
df = pd.read_csv('data.csv')
m = Prophet()
m.fit(df)
#The predict method will assign each row in future a predicted value
forecast = m.predict(future)
forecast[['ds', 'yhat', 'yhat_lower', 'yhat_upper']].tail()
#Plot
fig1 = m.plot(forecast)
fig2 = m.plot_components(forecast)
#It also has it owns plot
from fbprophet.plot import plot_plotly
import plotly.offline as py
py.init_notebook_mode()
fig = plot_plotly(m, forecast) # This returns a plotly Figure
py.iplot(fig)
Code Formatter Black
Black is the uncompromising Python code formatter A simple extension for Jupyter Notebook and Jupyter Lab to beautify Python code automatically using Black
pip install nb_black
For Jupyter Notebook
%load_ext nb_black
d = {"a": 1, "b":2,
'c' : "nikhil"}
Formatted
d = {"a": 1, "b": 2, "c": "nikhil"}
Progress Bar in Jupyter notebook
Library tqdm
pip install tqdm
In the Jupyter notebook
from tqdm import trange
from time import sleep
for i in trange(100):
sleep(0.01)
Code Refactoring
Radon
pip install radon
Radon is a Python tool that computes various metrics from the source code. Radon can compute:
- McCabe’s complexity, i.e. cyclomatic complexity
- raw metrics (these include SLOC, comment lines, blank lines, &c.)
- Halstead metrics (all of them)
- Maintainability Index (the one used in Visual Studio)
Data model
Special Methods
- under under method under under = Dunder
__name__ == __main__: main()
The function’s name.
You can refer for more information about Dunder Methods
streamlit
import streamlit as st
## Title
st.title("Hello World")
## Markdown
st.markdown("This example of Markdown")
## Header/subheader
st.header("Header")
st.subheader("Subheader")
## Colourful(Error/Information)
st.successful("Successful")
st.warning("Error")
st.info("Information")
st.error("Error")
st.exception("Exception")
from PIL import Image
img = Image.open("example.jpg")
import datetime
today = st.date_input("Today is ", datetime.datetime.now)
the_time = st.time_input("The time is",datetime.time())
if st.button("Thanks"):
st.balloons()
st.sidebar.header("About App")
st.sidebar.info("A Visualization Demo for TRI Data Scientist Challenge")
st.sidebar.header("About")
st.sidebar.info("Naeem Hussien")
st.sidebar.text("Machine Learning Engineer\n"
"beBit Tokyo Japan")